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Magnetosphere-lonosphere Coupling
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Electrons escape via
open field lines to the
Earth’s magnetosphere

Conservative of currents
along flux tube:
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lons escape via open
field lines to the Earth’s
magnetosphere

F, = Gravitational
F, = Electromagnetic

E= %va gV
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Escape:
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Polar wind is first
suggested by Axford
(1968) as an analogy to
the solar wind.

The discovery (Shelley
et al., 1972) of O
opens the discussion of

cold plasma.

N+ were discovered in
the Earth’s
magnetosphere
(Chappell et al., 1982)

(Credit: Lin et al., 2020, submitted)



Polar Wind Transport Equation

= Start with Boltzmann’s equations, T f.(r. v. 1) velocity distribution

Of, Ofs O fs i
aJ; !%L;WSVF @fw%&%v (B & }%\ J function

ot |- r, v, t:independent variables in the
Ofs [#0@lowalt; ., _ G % (EivyxB) phase space

ot =0 @ high aIt.; Mg
= Polar wind behaves as a hot fluid = Continuity Equation
898 dpe
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explains transport of e-
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Polar Wind Transport Equatlon

- f(r, v, t): velocity distribution

) fs  O0fs| function

53 6t |- r, v, t:independent variables in the
v x B) phase space
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Low altitude - collisions dominate




Higher altitude - less density - collisionless




Ambipolar electric field - created by charge separation of
particles of equal charges but different masses




Ambipolar electric field — classical outflow

my2 - IMm

r

E... (H") ~ 10eV
E...(e)=0.7eV



Ambipolar electric field




l  Wave-Particle Interaction:
The field perturbations

« Particle Precipitation:

photon, suprathermal

Additional Source ? olar rain and
precipitation.

Ambipolar electric field

* The transport of H* is mostly due to
ambipolar E (classical polar wind theory).

* The transport of cold heavy ions needs ) gMm
additional source to escape Earth’s Eose (H"): 10€V=2myviy,2 - ===
ionosphere. E oec (0"): 106V=2mo,v,2 - ST

0 + hv — 0+ + e E tJ@ (VO+~1O% VH+ & mO+~16mH+)




Summary of lon Qutflow

Open magnetic field line
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Solar Wind Magnetosphere
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The discovery of field-aligned current

= Kiristian Birkeland first suggested the auroral field-aligned
current by operating Terrella experiments in 1895.

= He was shooting cathode rays onto a magnetized sphere.
Currents were guided by magnetic field towards the sphere.

Terrella:
small model of Earth

Auroral FACs are also termed
“Birkeland currents” as a reference
to his early pioneering work.

Birkeland’s Terella Experiments, 1895
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Theory of field-aligned currents (/) —

B,
= MHD equation is only included J, (usx B # 0), not J, D d
dus dp
Os p -+ i psG —ngse(E+ ug x B) = Ypvt(ug — ug) - [H(
= Start with Maxwell’s equations and assume electrostatic ionosphere 2
rlp.Pedersen current
VxB=ud — V-J=0 (J =J| + J|| =Jg+Jdp + J||) g% JiHall Current
» |onospheric plasma is anisotropic and applied generalized Ohm’s law -
_O'p —O0y 0| 350
J=G -E=|oy o, O E
0 0 g - -
= From low to high altitudes, J, decreases while J; increases & . [
< _
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10 106 10% 102 1 102
CONDUCTIVITY (S/m)

I

ECE ILLINOIS




Theory of field-aligned currents (/) S

B, J

= MHD equation is only included J, (usx B # 0), not J, E, I
Pl NOT SURE IF PHYSICS IS

s X B) = Xpsvst(ug — ug)

]H(
= Start ssume electrostatic ionosphere 2
rlp.Pedersen current
V X J1 +Jy :JH—I-JP—I-JH) 8@, % JigHall Current

* |onosp d applied generalized Ohm’s law
O ] 350 E
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0 0 g — U e
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V-J:V'(JJ_—I—JH):O

Field-aligned current division -V-JL=V-J
Collisionless \] 600 kml B Region 1 Region 1
/ E o2\ A
lon Exbose

Where do FACs close?
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R1 and R2 FAC: Close at differgnt regions

i Region 1 i
\ Region 1 g / 7 & N I‘»’,“
7 it
4 § dm ." | I \5.32 ,“,\

V-J=

Field-aligned

-U/ Currents \1A

Close field line: Nightside magnetopause

e R1 current closes with
magnetopause current.
* R2 current closes with partial

ring current.

» Close field line: Partial ring current

R1: Poleward FAC
R2: Equatorward FAC
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Focus Group

= |[EMIT: Tuesday

— Understand Momentum/Energy input from the magnetosphere to the upper atmosphere
— Understand IT feedbacks to the magnetosphere

* M3I2: Wednesday

— [1:45 -1:55 PM (EST) How does the polar wind solution change in response to the
presence of N* ions? (Mei-Yun Lin)

— The effects of ion outflow population on magnetospheric dynamics
— The energization processes of the ion upflow/outflow

= |HMIC: Thursday

— Interhemispheric differences in ionospheric conductivity and storm signatures
— The neutral wind dynamo contribute to the interhemispheric asymmetry in M-I coupling

= CP: Thursday

— Measurements to understand the role of the cold plasma in magnetospheric physics
— Include the impact of the cold-plasma in magnetospheric modeling
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