The Contribution of N⁺ lons to Earth's Polar Wind

¹Mei-Yun Lin, ¹Raluca Ilie and ²Alex Glocer

¹Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign ²NASA Goddard Space Flight Center, Greenbelt, Maryland

Electrical & Computer Engineering COLLEGE OF ENGINEERING Work at University of Illinois at Urbana-Champaign was performed with financial support from AFOSR YIP Award No. AF FA 9550-18-1-0195, the NASA Grant 3004631577, and the NSF ICER Award No.1664078. The PWOM model has been included in the Space Weather Modeling Framework, which is available for download (at <u>http://csem.engin.umich.edu/tools/swmf/downloads.php</u>). Data generated for this study is available online (at <u>https://doi.org/10.6084/m9.figshare.12457373</u>). Ions and electrons escape via open field lines to the Earth's magnetosphere F₂

NO

0,1

 F_1 = Gravitational F_2 = Electromagnetic

$$\mathsf{E} = \frac{1}{2}\mathsf{m}\mathsf{v}^2 - \frac{\mathsf{g}\mathsf{M}\mathsf{m}}{r}$$

Escape: $E_{esc}(e^{-}) \ge 0.7 \text{ eV}$ $E_{esc}(lons) \ge 10 \text{ eV}$

Observation of N⁺ ions

(Credit: Ilie et al., 2020, submitted to JASTP) ECE ILLINOIS

Difficulty to distinguish N⁺ from O⁺ ions

THE PROBLEM:

Most instruments flying in space cannot distinguish them apart, due to instrument poor mass resolution.

Difficulty to distinguish N⁺ from O⁺ ions

THE PROBLEM:

Most instruments flying in space cannot distinguish them apart, due to instrument poor mass resolution.

- Albeit limited, the existing observations indicate that O⁺ and N⁺ exhibit a different behavior as affected by solar radiation, solar wind, and geomagnetic activities
- No studies considered the outflow of N⁺, in addition to that of O⁺ from first principles, in spite of:
 - different ionization potential,
 - different chemistry
 - different scale heights
 - different pathways of energization

Difficulty to distinguish N⁺ from O⁺ ions

MARCH 12, 1990 23:17:47 UT

16:07:04 UI

35 149 16 1

 10^{3}

- What is the abundance of N⁺ ions in the polar wind in response to solar flux and seasonal variations?
 - How does the presence of N⁺ impact the polar wind solution?

MARCH 12

Most instruments flying in space cannot distinguish them apart, due to instrument poor mass resolution.

M/Q (amu/q) different pathways of energization

MARCH 14

MARCH 13

Polar Wind Outflow Model (referred to as 3iPWOM)

- Chemical &
 Collisional Scheme
- Suprathermal Electron: GLOW
- Neutral Density: NRLMSISE-90

For each time step, solve $n, T, v, and E_{\parallel}$

Solves Transport Equations and E₁ equation for H^{+}, He^{+}, O^{+} $\frac{\partial}{\partial t}(A\rho_i) + \frac{\partial}{\partial r}(A\rho_i u_i) = AS_i$ $\frac{\partial}{\partial t}(A\rho_i u_i) + \frac{\partial}{\partial r}(A\rho_i u_i^2) + A\frac{\partial p_i}{\partial r} = A\rho_i(\frac{e}{m_i}E_{\parallel} - g) + A\frac{\delta M_i^2}{\delta t} + A\frac{\delta M_i^2}{\delta t}$ $\frac{\partial}{\partial t}\left(\frac{1}{2}A\rho_{i}u_{i}^{2}+\frac{1}{\gamma_{i}-1}Ap_{i}\right)+\frac{\partial}{\partial r}\left(\frac{1}{2}A\rho_{i}u_{i}^{3}+\frac{\gamma_{i}}{\gamma_{i}-1}Au_{i}p_{i}\right)$ $=A\rho_{i}u_{i}(\frac{e}{m_{*}}E_{\parallel}-g)+\frac{\partial}{\partial r}(A\kappa_{i}\frac{\partial T_{i}}{\partial r})+A\frac{\delta E_{i}}{\delta L}+Au_{i}\frac{\delta M_{i}}{\delta L}+\frac{1}{2}Au_{i}^{2}S_{i}$ $E_{\parallel} = -\frac{1}{en_e} \left[\frac{\partial}{\partial r} (p_e + \rho_e u_e^2) + \frac{A'}{A} \rho_e u_e^2\right] + \frac{1}{en_e} \frac{\partial}{\partial r} \left(\sum_i \frac{m_e}{m_i} \left[(u_e - u_i)S_i - \frac{\delta M_i}{\delta t}\right] + \frac{\delta M_e}{\delta t}\right)$

(Credit: Glocer et al., 2009) ECE ILLINOIS

Seven Ion Polar Wind Outflow Model (7iPWOM)

 New Chemical & Collisional Scheme

 Suprathermal Electron: GLOW

• Neutral Density: NRLMSISE-00

For each time step, solve $n, T, v, and E_{\parallel}$

Solves Transport Equations and E₁ equation for $H^+, He^+, N^+, O^+, N_2^+, NO^+, O_2^+$ $\frac{\partial}{\partial t}(A\rho_i) + \frac{\partial}{\partial r}(A\rho_i u_i) = AS_i \quad [1]$ Source term
Blue: Commistry Related
Red: Commistry Related
Red: Commistry Related n Related $\frac{\partial}{\partial t}(A\rho_{i}u_{i}) + \frac{\partial}{\partial r}(A\rho_{i}u_{i}^{2}) + A\frac{\partial p_{i}}{\partial r} = A\rho_{i}(\frac{e}{m_{i}}E_{\parallel} - \frac{e}{\text{Static molecular}})$ $\frac{\partial}{\partial t}(\frac{1}{2}A\rho_{i}u_{i}^{2} + \frac{1}{\gamma_{i}-1}Ap_{i}) + \frac{\partial}{\partial r}(\frac{1}{2}A\rho_{i}u_{i}^{3} + \frac{\gamma_{i}}{\gamma_{i}-1} \text{ ions (zero v and constant T)})$ $=A\rho_{i}u_{i}(\frac{e}{m}E_{\parallel}-g)+\frac{\partial}{\partial r}(A\kappa_{i}\frac{\partial T_{i}}{\partial r})+A\frac{\delta E_{i}}{\delta E_{i}}+Au_{i}\frac{\delta E_{i}}{\delta t}+\frac{\partial}{\partial t}Au_{i}^{2}S_{i}$ $E_{\parallel} = -\frac{1}{en_e} \left[\frac{\partial}{\partial r} (p_e + \rho_e u_e^2) + \frac{A'}{A} \rho_e u_e^2 \right] + \frac{1}{en_e} \left(\sum_i \frac{m_e}{m_i} \left[(u_e - u_i) S_i - \frac{\delta M_i}{\delta t} \right] + \frac{\delta M_e}{\delta t} \right)$ (3)Correct Equation

(Credit: Glocer et al., 2009) ECE ILLINOIS

Chemistry and Collisions

	_	Chemistry process	Reaction rate (cm^3s^{-1})	Reference
		$O + h\nu \longrightarrow O^+ + e^-$	see text	
isions		$O_2 + h\nu \longrightarrow O^+ + O + e^-$	see text	
1310113		$\mathrm{He} + \mathrm{h}\nu \longrightarrow \mathrm{He}^+ + \mathrm{e}^-$	see text	
		$\mathrm{H} + \mathrm{h} \nu \longrightarrow \mathrm{H}^+ + \mathrm{e}^-$	see text	
		$\mathrm{O} + \mathrm{e}^{*} \longrightarrow \mathrm{O}^{+} + 2 \mathrm{e}^{-}$	see text	
		$O_2 + e^* \longrightarrow O^+ + O + 2e^-$	see text	
		$\mathrm{He} + \mathrm{e}^* \longrightarrow \mathrm{He}^+ + 2 \mathrm{e}^-$	see text	
3iPWOM		$\mathrm{H} + \mathrm{e}^{*} \longrightarrow \mathrm{H}^{+} + 2 \mathrm{e}^{-}$	see text	
		$O^+ + N_2 \longrightarrow N + NO^+$	1.2×10^{-12}	[R. Schunk & Nagy, 2009]
		$O^+ + O_2 \longrightarrow O_2^+ + O$	2.1×10^{-11}	[R. Schunk & Nagy, 2009]
H+, He+, O+		$\operatorname{He}^+ + \operatorname{O}_2 \longrightarrow \operatorname{O}^+ + \operatorname{O} + \operatorname{He}$		[R. Schunk & Nagy, 2009]
II, IIC, O		$He^+ + N_2 \longrightarrow N_2^+ + He$	5.2×10^{-10}	[R. Schunk & Nagy, 2009]
		$He^+ + N_2 \longrightarrow N^+ + N + He$		[R. Schunk & Nagy, 2009]
		$H^+ + O \longrightarrow H + O^+$	$2.2 \times 10^{-11} \times T_e^{0.5}$	[R. Schunk & Nagy, 2009]
		$H + O^+ \longrightarrow H^+ + O$	$2.5 \times 10^{-11} \times T_e^{0.5}$	[R. Schunk & Nagy, 2009]

		Chemist	try process	Reaction rate (cm^3s^{-1})	Reference
Chemistry and Collisions		$O_2 + h\nu$ He + h ν H + h ν		see text see text see text see text see text	
	3iPWOM H+, He+, O+	$O_2 + e^*$ $He + e^*$ $H + e^*$ $O^+ + N$ $O^+ + O$ $He^+ + O$ $He^+ + N$ $He^+ + N$ $He^+ + N$ $H^+ + O$		$\begin{array}{rl} & \text{see text} \\ & \text{see text} \\ & 1.2 \times 10^{-12} \\ & 2.1 \times 10^{-11} \\ \text{e} & 9.7 \times 10^{-10} \\ & 5.2 \times 10^{-10} \\ \text{e} & 7.8 \times 10^{-10} \\ & 2.2 \times 10^{-11} \times T_e^{0.5} \end{array}$	 [R. Schunk & Nagy, 2009]
		$N + h\nu$ $N_{2} + h\nu$ $N_{2} + h\nu$ $O_{2} + h\nu$ $NO + h\mu$ $NO + h\mu$ $NO + h\mu$ $N_{2} + e^{*}$ $O_{2} + e^{*}$ $N_{2} + e^{*}$		$2.5 \times 10^{-11} \times T_e^{0.5}$ see text see text	[R. Schunk & Nagy, 2009]
		$N^{+} + O$ $N^{+} + O$ $N^{+} + O$ $N^{+} + N$		see text 3.07×10^{-10} 2.32×10^{-10} 4.6×10^{-11} 2×10^{-11}	 [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [Lindinger et al., 1974]
	7iPWOM H ⁺ , He ⁺ , N ⁺ , O ⁺ ,	$N^{+} + H$ $N_{2}^{+} + N$ $N_{2}^{+} + N$ $N_{2}^{+} + Q$ $N_{2}^{+} + Q$		$2.2 \times 10^{-12} \\3.6 \times 10^{-12} \\10^{-11} \\4.1 \times 10^{-10} \\1.3 \times 10^{-10} \\1.0 \times 10^{-11} \\$	 [Richards & Voglozin, 2011] [Harada et al., 2010] [Richards & Voglozin, 2011] [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009]
10	N ₂ ⁺ , NO ⁺ , O ₂ ⁺	$O^{+} + N$ $N^{+} + e^{-}$ $N_{2}^{+} + e$ $NO^{+} + e^{-}$	$D_{2} \longrightarrow O_{2}^{+} + N_{2}$ $O \longrightarrow NO^{+} + O$ $\overline{\longrightarrow} N$ $e^{-} \longrightarrow N + N$ $e^{-} \longrightarrow N + O$ $e^{-} \longrightarrow O + O$	$5.0 \times 10^{-11} \\ 8.0 \times 10^{-13} \\ 3.6 \times 10^{-12} \times (\frac{250}{T_e})^{0.7} \\ 2.2 \times 10^{-7} \times (\frac{300}{T_e})^{0.39} \\ 4.0 \times 10^{-7} \times (\frac{300}{T_e})^{0.5} \\ 2.4 \times 10^{-7} \times (\frac{300}{T_e})^{0.7} \\ \end{cases}$	 [R. Schunk & Nagy, 2009]

		Cher	nistry process	Reaction rate (cm^3s^{-1})	Reference
Chemistry and Co	ollisions	$O_2 + He + H$	$ \begin{array}{ccc} h\nu & \longrightarrow & O^{+} + e^{-} \\ -h\nu & \longrightarrow & O^{+} + O + e^{-} \\ -h\nu & \longrightarrow & He^{+} + e^{-} \\ h\nu & \longrightarrow & H^{+} + e^{-} \\ e^{*} & \longrightarrow & O^{+} + 2 e^{-} \end{array} $	see text see text see text see text see text	
New sources/losses for O ⁺	3iPWOM H+, He+, O+	He + He + H + 0 O ⁺ - He ⁺ He ⁺ He ⁺ H + 0 N + 1 N ₂ + N ₂ + NO - NO -	$\begin{array}{rcl} -\mathrm{e}^{*} &\longrightarrow \mathrm{O}^{+} +\mathrm{O} + 2\mathrm{e}^{-} \\ \mathrm{e}^{*} &\longrightarrow \mathrm{He}^{+} + 2\mathrm{e}^{-} \\ \mathrm{e}^{*} &\longrightarrow \mathrm{H}^{+} + 2\mathrm{e}^{-} \\ \mathrm{e}^{*} &\longrightarrow \mathrm{H}^{+} + 2\mathrm{e}^{-} \\ \mathrm{e}^{*} &\longrightarrow \mathrm{H}^{+} + 2\mathrm{e}^{-} \\ \mathrm{e}^{*} &\longrightarrow \mathrm{N}^{+} + \mathrm{NO}^{+} \\ \mathrm{e}^{*} &\longrightarrow \mathrm{O}^{+} + \mathrm{O} + \mathrm{H} \\ \mathrm{e}^{*} &\longrightarrow \mathrm{O}^{+} + \mathrm{O} + \mathrm{H} \\ \mathrm{e}^{*} &\longrightarrow \mathrm{N}^{+} + \mathrm{N} + \mathrm{H} \\ \mathrm{e}^{*} &\longrightarrow \mathrm{H}^{+} + \mathrm{O} \\ \mathrm{h}^{*} &\longrightarrow \mathrm{H}^{+} + \mathrm{O} \\ \mathrm{h}^{*} &\longrightarrow \mathrm{H}^{+} + \mathrm{O} \\ \mathrm{h}^{*} &\longrightarrow \mathrm{N}^{+} + \mathrm{H}^{-} \\ \mathrm{e}^{*} &\longrightarrow \mathrm{N}^{2}^{+} + \mathrm{e}^{-} \\ \mathrm{e}^{*} &\longrightarrow \mathrm{N}^{2}^{+} + \mathrm{e}^{-} \\ \mathrm{e}^{*} &\longrightarrow \mathrm{N}^{2}^{+} + \mathrm{e}^{-} \\ \mathrm{e}^{*} &\longrightarrow \mathrm{N}^{0}^{+} + \mathrm{O} + \mathrm{e}^{-} \\ \mathrm{e}^{*} &\longrightarrow \mathrm{N}^{2}^{+} + 2\mathrm{e}^{-} \\ \mathrm{e}^{*} &\longrightarrow \mathrm{O}^{2}^{+} + 2\mathrm{e}^{-} \\ \mathrm{e}^{*} &\longrightarrow \mathrm{O}^{2}^{+} + 2\mathrm{e}^{-} \\ \mathrm{e}^{*} &\longrightarrow \mathrm{O}^{2}^{+} + 3\mathrm{e}^{-} \\ \mathrm{e}^{*} &\longrightarrow \mathrm{N}^{+} + \mathrm{N} + 2\mathrm{e}^{-} \end{array}$	see text see text 1.2×10^{-12} 2.1×10^{-11} 9.7×10^{-10} 5.2×10^{-10} $2.2 \times 10^{-11} \times T_e^{0.5}$ $2.5 \times 10^{-11} \times T_e^{0.5}$ see text see text	 [R. Schunk & Nagy, 2009]
		N+ - N+ - N+ -	$\begin{array}{ccc} + O_2 & \longrightarrow & NO^+ + O \\ \hline O_2 & \longrightarrow & O_2^+ + N \\ + O_2 & \longrightarrow & O^+ + NO \\ \hline + NO & \longrightarrow & NO^+ + N \end{array}$	$ \begin{array}{r} 3.07 \times 10^{-10} \\ \underline{2.32 \times 10^{-10}} \\ \underline{4.6 \times 10^{-11}} \\ 2 \times 10^{-11} \end{array} $	 [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [Lindinger et al., 1974]
	7iPWOM	N+ -	$\begin{array}{rcl} + & O & \longrightarrow & N + O^+ \\ + & H & \longrightarrow & N + H^+ \\ + & N & \longrightarrow & N^+ + N_2 \end{array}$	$2.2 \times 10^{-12} \\ 3.6 \times 10^{-12} \\ 10^{-11}$	[Richards & Voglozin, 2011] [Harada et al., 2010] [Richards & Voglozin, 2011]
	H+, He+, N+, O+,	N_2^+ N_2^+	$+ \text{NO} \longrightarrow \text{NO}^+ + \text{N}_2$ $+ \text{O} \longrightarrow \text{NO}^+ + \text{N}_2$	$4.1 \times 10^{-10} \\ 1.3 \times 10^{-10}$	[R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009]
	N_2^+, NO^+, O_2^+	O^+	$+ O \longrightarrow O^{+} + N_{2}$ $+ O_{2} \longrightarrow O_{2}^{+} + N_{2}$ $+ NO \longrightarrow NO^{+} + O$	$ \begin{array}{r} 1.0 \times 10^{-11} \\ \overline{} 5.0 \times 10^{-11} \\ 8.0 \times 10^{-13} \\ \overline{} 7.0 \times 12 \\ \overline{} 7.0 \times 0.7 \end{array} $	[R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009]
11		N_2^+ NO ⁺	$\begin{array}{ccc} + e^{-} & \longrightarrow & N \\ + e^{-} & \longrightarrow & N + N \\ - + e^{-} & \longrightarrow & N + O \\ + e^{-} & \longrightarrow & O + O \end{array}$	$\frac{3.6 \times 10^{-12} \times (\frac{250}{T_e})^{0.7}}{2.2 \times 10^{-7} \times (\frac{300}{T_e})^{0.39}}$ $4.0 \times 10^{-7} \times (\frac{300}{T_e})^{0.5}$ $2.4 \times 10^{-7} \times (\frac{300}{T_e})^{0.7}$	 [R. Schunk & Nagy, 2009]

		Chemistry process	Reaction rate (cm^3s^{-1})	Reference
Chemistry and Co	ollisions	$\begin{array}{ccc} O + h\nu & \longrightarrow & O^{+} + e^{-} \\ O_{2} + h\nu & \longrightarrow & O^{+} + O + e^{-} \\ He + h\nu & \longrightarrow & He^{+} + e^{-} \\ H + h\nu & \longrightarrow & H^{+} + e^{-} \\ O + e^{*} & \longrightarrow & O^{+} + 2 e^{-} \end{array}$	see text see text see text see text see text	
New sources/losses for O ⁺	3iPWOM H+, He+, O+	$\begin{array}{cccc} O_2 + e^* & \longrightarrow & O^+ + O + 2 e^- \\ He + e^* & \longrightarrow & He^+ + 2 e^- \\ H + e^* & \longrightarrow & H^+ + 2 e^- \\ O^+ + N_2 & \longrightarrow & N + NO^+ \\ O^+ + O_2 & \longrightarrow & O_2^+ + O \\ He^+ + O_2 & \longrightarrow & O_2^+ + O + He \\ He^+ + N_2 & \longrightarrow & N_2^+ + He \\ He^+ + N_2 & \longrightarrow & N_2^+ + He \\ He^+ + N_2 & \longrightarrow & N_1^+ + N_1 + He \\ H^+ + O & \longrightarrow & H^+ + O^+ \\ H + O^+ & \longrightarrow & H^+ + O^- \\ N + h\nu & \longrightarrow & N^+ + e^- \end{array}$	5.2×10^{-10}	 [R. Schunk & Nagy, 2009]
		$\begin{array}{cccc} N_{2}+h\nu & \longrightarrow & N^{+}+N+e^{-} \\ N_{2}+h\nu & \longrightarrow & N_{2}^{+}+e^{-} \\ O_{2}+h\nu & \longrightarrow & O_{2}^{+}+e^{-} \\ NO+h\nu & \longrightarrow & N^{+}+O+e^{-} \\ NO+h\nu & \longrightarrow & NO^{+}+e^{-} \\ NO+h\nu & \longrightarrow & O^{+}+N+e^{-} \\ N_{2}+e^{*} & \longrightarrow & O_{2}^{+}+2e^{-} \\ O_{2}+e^{*} & \longrightarrow & O_{2}^{+}+2e^{-} \\ N_{2}+e^{*} & \longrightarrow & 2N^{+}+3e^{-} \end{array}$	see text see text see text see text see text see text see text see text see text	
New sources		$\begin{array}{ccc} N_{2} + e^{*} & \longrightarrow & N^{+} + N + 2 e^{-} \\ N^{+} + O_{2} & \longrightarrow & NO^{+} + O \\ \hline N^{+} + O_{2} & \longrightarrow & O^{2} + N \\ N^{+} + O_{2} & \longrightarrow & O^{+} + NO \\ \hline N^{+} + NO & \longrightarrow & NO^{+} + N \\ \hline N^{+} + O & \longrightarrow & N + O^{+} \end{array}$	$ see text 3.07 \times 10^{-10} 2.32 \times 10^{-10} 4.6 \times 10^{-11} 2 \times 10^{-11} 2.2 \times 10^{-12} $	[R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [Lindinger et al., 1974]
for H ⁺	7iPWOM H ⁺ , He ⁺ , N ⁺ , O ⁺ ,	$ \begin{array}{c} N^{+} + 0 \longrightarrow N + 0^{+} \\ N^{+} + H \longrightarrow N + H^{+} \\ N_{2}^{+} + N \longrightarrow N^{+} + N_{2} \\ N_{2}^{+} + N \longrightarrow N0^{+} + N_{2} \\ \hline N_{2}^{+} + 0 \longrightarrow N0^{+} + N_{2} \\ \hline N_{2}^{+} + 0 \longrightarrow 0^{+} + N_{2} \end{array} $	$ \begin{array}{r} 2.2 \times 10 \\ 3.6 \times 10^{-12} \\ 10^{-11} \\ 4.1 \times 10^{-10} \\ 1.3 \times 10^{-10} \\ 1.0 \times 10^{-11} \end{array} $	[Richards & Voglozin, 2011] [Harada et al., 2010] [Richards & Voglozin, 2011] [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009]
	N_2^+, NO^+, O_2^+	$ \begin{array}{c} N_2 + 0 & \longrightarrow & 0 + N_2 \\ \hline N_2 + O_2 & \longrightarrow & O_2 + N_2 \\ O^+ + NO & \longrightarrow & NO^+ + O \\ \hline N^+ + e & \longrightarrow & N \\ N_2^+ + e^- & \longrightarrow & N + N \\ NO^+ + e^- & \longrightarrow & N + O \end{array} $	$\frac{1.0 \times 10}{5.0 \times 10^{-14}}$ $\frac{5.0 \times 10^{-14}}{8.0 \times 10^{-13}}$ $\frac{3.6 \times 10^{-12} \times (\frac{250}{T_e})^{0.7}}{2.2 \times 10^{-7} \times (\frac{300}{T_e})^{0.39}}$ $4.0 \times 10^{-7} \times (\frac{300}{T_e})^{0.5}$	[R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009]
12		$0_2^+ + e^- \longrightarrow 0 + 0$	$\frac{4.0 \times 10^{-7} \times (\frac{7}{T_e})}{2.4 \times 10^{-7} \times (\frac{300}{T_e})^{0.7}}$	[R. Schunk & Nagy, 2009]

		~	Chemistry process	Reaction rate(cm^3s^{-1})	Reference
Chemistry and Co	ollisions		$ \begin{array}{c} O + h\nu \longrightarrow O^{+} + e^{-} \\ O_{2} + h\nu \longrightarrow O^{+} + O + e^{-} \\ He + h\nu \longrightarrow He^{+} + e^{-} \\ H + h\nu \longrightarrow H^{+} + e^{-} \\ O + e^{*} \longrightarrow O^{+} + 2e^{-} \\ \end{array} $	see text see text see text see text see text	
Ele	3iPWOM H+, He+, O+		$\begin{array}{c} O_2 + e^* \longrightarrow O^+ + O + 2 e^- \\ He + e^* \longrightarrow He^+ + 2 e^- \\ H + e^* \longrightarrow H^+ + 2 e^- \\ O^+ + N_2 \longrightarrow N + NO^+ \\ O^+ + O_2 \longrightarrow O_2^+ + O \\ He^+ + O_2 \longrightarrow O_2^+ + O \\ He^+ + N_2 \longrightarrow N^+ + O + He \\ He^+ + N_2 \longrightarrow N^+ + N + He \\ He^+ + N_2 \longrightarrow N^+ + N + He \\ H^+ + O \longrightarrow H + O^+ \\ H + O^+ \longrightarrow H^+ + O \\ N + h\nu \longrightarrow N^+ + e^- \\ N_2 + h\nu \longrightarrow N^+ + N + e^- \\ N_2 + h\nu \longrightarrow N^+ + N + e^- \\ N_2 + h\nu \longrightarrow N^+ + O + e^- \\ NO + h\nu \longrightarrow N^+ + O + e^- \\ NO + h\nu \longrightarrow N^+ + O + e^- \\ NO + h\nu \longrightarrow N^+ + O + e^- \\ NO + h\nu \longrightarrow O^+ + N + e^- \\ N_2 + e^* \longrightarrow O_2^+ + 2e^- \\ O_2 + e^* \longrightarrow O_2^+ + 2e^- \\ N_2 + e^* \longrightarrow 2N^+ + 3e^- \end{array}$	5.2×10^{-10}	 [R. Schunk & Nagy, 2009]
New sources for H ⁺	7iPWOM H ⁺ , He ⁺ , N ⁺ , O ⁺ , N ₂ ⁺ , NO ⁺ , O ₂ ⁺		$\begin{array}{c} N_{2} + e^{*} \longrightarrow N^{+} + N + 2e^{-} \\ N^{+} + O_{2} \longrightarrow NO^{+} + O \\ \hline N^{+} + O_{2} \longrightarrow O_{2}^{+} + N \\ N^{+} + O_{2} \longrightarrow O^{+} + NO \\ \hline N^{+} + NO \longrightarrow NO^{+} + N \\ \hline N^{+} + O \longrightarrow NO^{+} + N \\ \hline N^{+} + H \longrightarrow N + H^{+} \\ \hline N_{2}^{+} + NO \longrightarrow NO^{+} + N_{2} \\ \hline N_{2}^{+} + O \longrightarrow NO^{+} + N_{2} \\ \hline N_{2}^{+} + O \longrightarrow O^{+} + N_{2} \\ \hline N_{2}^{+} + O \longrightarrow O^{+} + N_{2} \\ \hline N_{2}^{+} + O \longrightarrow O^{+} + N_{2} \\ \hline N_{2}^{+} + O \longrightarrow O^{+} + N_{2} \\ \hline N_{2}^{+} + O \longrightarrow NO^{+} + O \\ \hline N^{+} + e \longrightarrow N \end{array}$	$\frac{\text{see text}}{3.07 \times 10^{-10}}$ $\frac{2.32 \times 10^{-10}}{4.6 \times 10^{-11}}$ $\frac{2.2 \times 10^{-11}}{2 \times 10^{-11}}$ $\frac{2.2 \times 10^{-12}}{10^{-11}}$ $\frac{1.3 \times 10^{-10}}{1.3 \times 10^{-10}}$ 1.0×10^{-11} $\frac{5.0 \times 10^{-13}}{8.0 \times 10^{-13}}$ $3.6 \times 10^{-12} \times (\frac{250}{T_2})^{0.7}$	 [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [Lindinger et al., 1974] [Richards & Voglozin, 2011] [Harada et al., 2010] [Richards & Voglozin, 2011] [R. Schunk & Nagy, 2009]
13			$N_{2}^{+} + e^{-} \longrightarrow N + N$ $NO^{+} + e^{-} \longrightarrow N + O$ $O_{2}^{+} + e^{-} \longrightarrow O + O$	$2.2 \times 10^{-7} \times (\frac{300}{T_e})^{0.39} 4.0 \times 10^{-7} \times (\frac{300}{T_e})^{0.5} 2.4 \times 10^{-7} \times (\frac{300}{T_e})^{0.7}$	[R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009]

What causes these differences?

Presence of N⁺ and molecular species leads to :

- A significant increase (~1 an order of magnitude) in He⁺ density.
- H⁺ solution improves as compared with measurements
- O⁺ density profile better matches the data, and the density is a factor 2 larger.
- N⁺ profile matches observations
- All species show an increase in temperature/energy.

What causes these differences?

ECE ILLINOIS

: 7iPWOM

: 3iPWOM

0+

N + H +

He⁺

[20

23

7iPWOM

- 3iPWOM ECE ILLINOIS

24

7iPWOM

- 3iPWOM ECE ILLINOIS

- 3iPWOM ECE ILLINOIS

— 7iPWOM

- 3iPWOM ECE ILLINOIS

— 7iPWOM

Conclusion

- N⁺ ions are the second most abundant ion species in the ionospheric outflow, for all conditions.
- Data-model comparison shows that the presence on N⁺ improves the polar wind solution significantly.
 - 7iPWOM predicts the seasonal variation with He⁺ due to expanded scheme of SE production.
 - Expanded chemical scheme leads to a redistribution of the ion density in the topside ionosphere.
- Extra energy source, such as through wave particle interactions, could have a profound influence on the upward transport of the N⁺.
 - N^+ ions are likely to couple with cold neutral species than the O⁺ ions.