The Contribution of N⁺ lons to

¹Mei-Yun Lin, ¹Raluca Ilie and ²Alex Glocer

¹Department of Electrical and Computer Engineering, University of Illinois 2NASA Goddard Space Flight Center, Greenbelt, Maryland

IT ILLINOIS Electrical & Computer Engineering COLLEGE OF ENGINEERING

Work at University of Illinois at from AFOSR YIP Award No. AF NSF ICER Award No.1664078. Weather Modeling Framework, http://csem.engin.umich.edu/to available online (at https://doi.o

Ions and electrons escape via open field lines to the Earth's magnetosphere

He+

e-

H+

 F_{2}

F₁ **W M** $\frac{0}{2}$ **N** +

O+

NO+

e-

 O_2^+

 N_2^+

e-

 F_1 = Gravitational F_2 = Electromagnetic

?

$$
E = \frac{1}{2}mv^2 - \frac{gMm}{r}
$$

E∥

Escape: $\mathsf{E}_{\rm esc}(\mathsf{e}^\text{-}) \geq 0.7$ eV $E_{\rm esc}$ (lons) ≥ 10 eV

ECE ILLINOIS

Observation of N+ ions

3

(Credit: Ilie et al., 2020, submitted to JASTP) ECE ILLINOIS

Difficulty to distinguish N+ from O+ ions

THE PROBLEM:

Most instruments flying in space cannot distinguish them apart, due to instrument poor mass resolution.

Difficulty to distinguish N+ from O+ ions

THE PROBLEM:

Most instruments flying in space cannot distinguish them apart, due to instrument poor mass resolution.

- **Albeit limited, the existing** observations indicate that **O+ and N+ exhibit a different behavior as affected by solar radiation, solar wind, and geomagnetic activities**
- § **No studies considered the outflow of N+**, in addition to that of O+ from first principles, in spite of:
	- \triangleright different ionization potential,
	- \triangleright different chemistry
	- \triangleright different scale heights
	- \triangleright different pathways of energization

ECE ILLINOIS

Difficulty to distinguish N+ from O+ ions

N+ Exhibit a different behavior as \mathbf{r} and \mathbf{r} and \mathbf{r} and \mathbf{r}

MARCH 12, 1990 23:17:47
10⁴ \uparrow

 \pm

ECE ILLINOIS

C

E

 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

 Q^+

16:07:04 UT

- **C WHICH IT ISSPU** and the poler which **wind, and generally activities of the contractivities** wind in response to solar flux and seasonal **outflow of N+**, in addition to that of p
n ■ What is the abundance of N⁺ ions in the polar variations?
	- $\begin{pmatrix} \mathcal{N}^1 \\ \mathcal{N}^1 \end{pmatrix}$ \mathbf{N} impact the polar \mathbf{V} ■ How does the presence of N⁺ impact the polar wind solution?

Most instruments flying in space cannot distinguish them apart, due to instrument poor mass resolution.

 \triangleright different pathways of MARCH 13 MARCH 14 M/G energization

Polar Wind Outflow Model (referred to as 3iPWOM)

- Chemical & Collisional Scheme
- **Suprathermal** Electron: GLOW
- Neutral Density: NRLMSISE-90

For each time step, solve $n, T, v, and E_{II}$

Solves Transport Equations and E[∥] equation for H^+ , He^+ , O^+ ∂ ∂t $(A\rho_i) + \frac{\partial}{\partial_i}$ ∂r $(A\rho_i u_i) = AS_i$ ∂ ∂t $(A\rho_i u_i) + \frac{\partial}{\partial_i}$ ∂r $(A\rho_i u_i^2) + A\frac{\partial p_i}{\partial x}$ ∂r $= A\rho_i\left(\frac{e}{m}\right)$ *mⁱ* $E_{\parallel} - g$) + $A \frac{\delta M_{i}^{2\prime}}{\delta t} + A \frac{\delta M_{i}^{2\prime}}{\delta t}$ ∂ ∂t (1 2 $A\rho_i u_i^2 +$ 1 $\gamma_i - 1$ $Ap_i) + \frac{\partial}{\partial x}$ ∂r (1 2 $A\rho_i u_i^3 + \frac{\gamma_i}{\gamma_i}$ γ_i-1 $Au_ip_i)$ $= A\rho_i u_i \left(\frac{e}{m} \right)$ *mⁱ* $E_{\parallel} - g) + \frac{\partial}{\partial r}$ $(A\kappa_i$ $\frac{\partial T_i}{\partial r}$) + $A \frac{\delta E_i}{\delta_t}$ $+ Au_i$ δM_i $\frac{t}{\delta t}$ + 1 2 $Au_i^2S_i$ $E_{\parallel} = -\frac{1}{en_e}$ [∂ ∂r $(p_e + \rho_e u_e^2) + \frac{A'}{4}$ $\frac{A}{A} \rho_e u_e^2$ $\binom{2}{e} + \frac{1}{\sqrt{2n}}$ *en^e* ∂ ∂r $\left(\sum\right)$ *i m^e* $\frac{m_e}{m_i}[(u_e - u_i)S_i - \frac{\delta M_i}{\delta t}] + \frac{\delta M_e}{\delta t})$ *z B*(*r*,*z*) *r*(*z*)

(Credit: Glocer et al., 2009) **ECE ILLINOIS**

Seven Ion Polar Wind Outflow Model (7iPWOM)

• New **Chemical** & **Collisional** Scheme

• **Suprathermal** $\bf{Electron: GLOW}$ (*A*⇢*iu*²

• Neutral Density: NRLMSISE-00 \bullet al Density: *MSISE-00*

For each time step, solve

+

@*r*

(*Aⁱ*

Solves Transport Equations and E[∥] equation for $\rm H^{+}, \rm He^{+}, \rm N^{+}, \rm O^{+}, \rm N_2^{+}, \rm NO^{+}, \rm O_2^{+},$ n, T, v, and E[∥] **7iPWOM** ∂ ∂t $(A\rho_i) + \frac{\partial}{\partial_i}$ ∂r $(A\rho_i u_i) = AS_i$ [1] ⁼ *^A*⇢*i*(*^e* $\overline{\partial t}$ $\frac{\partial}{\partial t}(A\rho_i u_i) + \frac{\partial}{\partial r}(A\rho_i u_i^2) + A$ *ⁱ* ⁺ *ⁱ i* 1 ∂ *i*, 1 ∂ _{*i*} 1 *mⁱ* $\lim_{n \to \infty}$ $\begin{bmatrix} 0 & 2 \\ 1 & 2 \end{bmatrix}$ $= A_0 u$ $\frac{y_i}{\rho}$ $\frac{e}{m}E_{\parallel}$ 2 $g) + \frac{g}{f}$ @*t* 3lue: **(***A*
3ed: Co @*r* $\begin{bmatrix} \n\text{if } \mathbf{a} \neq \mathbf{b} \n\end{bmatrix}$ and $\begin{bmatrix} \text{if } \mathbf{b} \end{bmatrix}$ and $\begin{bmatrix} \text{if } \mathbf{c} \end{bmatrix}$ are $\begin{bmatrix} \text{if } \mathbf{c} \end{bmatrix}$ and $\begin{bmatrix} \text{if } \mathbf{c} \end{bmatrix}$ are $\begin{bmatrix} \text{if } \mathbf{c} \end{bmatrix}$ and $\begin{bmatrix} \text{if } \mathbf{c} \end{bmatrix}$ ar ∂t $(A\rho_i u_i) + \frac{\partial}{\partial_i}$ ∂r $(A\rho_i u_i^2) + A\frac{\partial p_i}{\partial x}$ ∂r $= A\rho_i\left(\frac{e}{m}\right)$ *mⁱ E*_k *<i>f***_i** *G***) +** *A<i>i Az <i>f***_i***/z**<i>f***_i***l**<i>n***** *<i><i>i <i>f* *<i>f* *<i><i>i**f <i><i>i**f <i><i>i**<i>f***** *<i>f***** *<i><i>i f <i><i>i**<i>f***** *<i>* $\frac{\partial}{\partial t}$ $\int \rho_i u_i^ -\frac{1}{4}$ $A\iota$ $\frac{1}{2}$ $\bigg)$ $+\frac{\partial}{\partial}(\frac{1}{2}A\rho_i u^2)$ $\iota \rho_i u_i$ - $\frac{\gamma_i}{\gamma}$ ions (ze *mⁱ* $\frac{\partial}{\partial x}(\frac{1}{2}A\rho_iu_i^2+\frac{1}{2}A p_i)+\frac{\partial}{\partial y}(\frac{1}{2}A\rho_iu_i^3+\frac{\gamma_i}{2})$ lons (zero v ar \int \acute{c} $\frac{1}{\cdot}$ $(A$ $\frac{\partial T_i}{\partial r}) + A \frac{\delta E}{\delta_t}$ + *Auⁱ Mⁱ* $\frac{1}{\delta t}$ + 1 2 $A = A \rho_i u_i \left(\frac{e}{m_i} E_{\parallel} - g \right) + \frac{\partial}{\partial r} (A \kappa_i \frac{\partial T_i}{\partial r}) + A \frac{\partial E_i}{\partial t} + A u_i \frac{\partial}{\partial t} + \frac{\partial}{2} A u_i^2 S_i$ @*t* @*r* $\begin{bmatrix} 0 \\ \frac{\partial}{\partial t} \end{bmatrix}$ $\overline{\mathcal{O}}$ $(A\rho_i u_i) + \frac{\partial}{\partial r}(A)$ $a_i^2 + A^2$ *mⁱ* $\frac{p_i}{p_r} = A \rho_i (\frac{e}{m_i} E_{\parallel} -$ Stati ∂t (1 2 $A\rho_i u_i^2 +$ 1 $\gamma_i - 1$ $Ap_i) + \frac{\partial}{\partial x}$ ∂r (1 2 $A\rho_i u_i^3 + \frac{\gamma_i}{\gamma_i}$ γ_i -*Auipi*) ⁼ *^A*⇢*iui*(*^e* m_i or or or or or or or or or $(g) + \frac{\partial}{\partial r} (A \kappa)$ $\frac{1}{\partial r}$ $A^{\mathbf{0}}$ $A \frac{1}{\delta_t}$ $\frac{1}{1}$ $Au_i = \frac{\partial u_i}{\partial x_i}$ Red: Co \rightarrow Red:Co T^{t} \overline{A} $(\rho_i u_i) + \frac{\sigma}{\partial r}$ @*r* $(A\rho_i u_i^2) + A\frac{\rho p_i}{\partial r} = A\rho_i(\frac{e}{m_i}).$ E_{\parallel} *f* Static molecu @ $\frac{1}{i}$ – ($\overline{1}$ Ap_i ^{$+)$} + $\frac{1}{2}$ $\overline{\partial r} \setminus \overline{2}^{\mathcal{F}}$ $A\rho_i u_i^3 + \overline{\gamma}$ ($\frac{1}{i}$ 2 *A*⇢*iu*³ *ⁱ* ⁺ *ⁱ* **insta** *Auipi*) $= A\rho_i u_i \left(\frac{e}{m} \right)$ *mⁱ* $E_{\parallel} - g) + \frac{\partial}{\partial r}$ $(A\kappa_i$ $\frac{\partial T_i}{\partial r}) + A \frac{\delta E_i}{\delta_t}$ $+ Au_i$ *Mⁱ* $\frac{1}{\delta t}$ + 1 2 $\overline{Au_i^2S_i}$ [1] (zoro v and [3] Energy Change Source term ions (zero **v** and $E_{\parallel} = -\frac{1}{en_e}$ [∂ ∂r $(p_e + \rho_e u_e^2) + \frac{A'}{4}$ $\frac{A}{A} \rho_e u_e^2$ $\binom{2}{e} + \frac{1}{e}$ *en^e* $\left(\sum_{i=1}^{n} x_i\right)$ *i* m_e ^{$\overline{ }$} $\frac{m_e}{m_i}[(u_e - u_i)S_i - \frac{\delta M_i}{\delta t}] + \frac{\delta M_e}{\delta t})$ *z* **Static molecular** *r*(z) { Blue: C mistry Related Red: Collision Related **constant T)** *Correct Equation*

(

(Credit: Glocer et al., 2009)

Chemistry and Collisions

3iPWOM

 H^+ , He^+ , O^+

 $\sqrt{2}$

3iPWOM 7iPWOM 7iPWO

3iPWOM 7iPWOM 7iPWO

3iPWOM 7iPWOM 7iPWO

What causes these differences?

19

Presence of **N+** and molecular species leads to :

- A significant increase (~1 an order of magnitude) in **He**⁺ density.
- **H⁺** solution improves as compared with measurements
- § **O+** density profile better matches the data, and the density is a factor 2 larger.
- § **N+** profile matches observations
- § *All species show an increase in temperature/energy.*

What causes these differences? $\qquad \qquad \qquad \qquad \blacksquare^{\textit{H}^+}\qquad \qquad \qquad \textit{---}$

7iPWOM 3iPWOM

ECE ILLINOIS

: 7iPWOM

 O^+

 N^+

 H^+

: 3iPWOM

20

22

23

7iPWOM 3iPWOM ECE ILLINOIS

24

7iPWOM 3iPWOM ECE ILLINOIS

(b) Collision (c) Collision (c) SIP VVOIVI ECE ILLIN 7iPWOM 3iPWOM

(b) Collision (c) Collision (c) SIP VVOIVI ECE ILLIN 7iPWOM 3iPWOM

Conclusion

- \blacksquare N⁺ ions are the second most abundant ion species in the ionospheric outflow, for all conditions.
- Data-model comparison shows that the presence on N^+ improves the polar wind solution significantly.
	- 7iPWOM predicts the seasonal variation with He+ due to expanded scheme of SE production.
	- Expanded chemical scheme leads to a redistribution of the ion density in the topside ionosphere.
- Extra energy source, such as through wave particle interactions, could have a profound influence on the upward transport of the N+.
	- $-$ N⁺ ions are likely to couple with cold neutral species than the O⁺ ions.

ECE ILLINOIS