The role of molecular ions in the overall ionic composition of polar wind outflow

1Mei-Yun Lin, 1Raluca Ilie and 2Alex Glocer

1Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

2NASA Goddard Space Flight Center, Greenbelt, Maryland

Ions and electrons escape via open field lines to the Earth's magnetosphere and to outer space **F**₁ **W M** $\frac{0}{2}$ **N** +

He+

e-

H+

 F_{2}

O+

NO+

e-

 O_2^+

 N_2^+

e-

 F_1 = Gravitational F_2 = Electromagnetic

?

$$
E = \frac{1}{2}mv^2 - \frac{gMm}{r}
$$

E∥

Escape: $\mathsf{E}_{\rm esc}(\mathsf{e}^\text{-}) \geq 0.7$ eV $\overline{\mathsf{E}}_{\textrm{esc}}$ (lons) $\geqq 10 \textrm{ eV}$

60 Years of N+ observation

 \blacksquare The presence of N⁺ ions could change plasma characteristics in the inner magnetosphere.

³ (*Ilie et al.*, [2020], submitted to JASTP) **ECE ILLINOIS**

Polar Wind Outflow Model (referred to as 3iPWOM)

- Chemical & Collisional Scheme
- **Suprathermal** Electron: GLOW
- Neutral Density: NRLMSISE-90

At each time step, solves for the n, T, v, and E_{\parallel}

Solves for the **transport** and **E**[∥] equations for H^+ , He^+ , O^+ ∂ ∂t $(A\rho_i) + \frac{\partial}{\partial_i}$ ∂r $(A\rho_i u_i) = AS_i$ ∂ ∂t $(A\rho_i u_i) + \frac{\partial}{\partial_i}$ ∂r $(A\rho_i u_i^2) + A\frac{\partial p_i}{\partial x}$ ∂r $= A\rho_i\left(\frac{e}{m}\right)$ *mⁱ* $E_{\parallel} - g$) + $A \frac{\delta M_{i}^{2\prime}}{\delta t} + A \frac{\delta M_{i}^{2\prime}}{\delta t}$ ∂ ∂t (1 2 $A\rho_i u_i^2 +$ 1 $\gamma_i - 1$ $Ap_i) + \frac{\partial}{\partial x}$ ∂r (1 2 $A\rho_i u_i^3 + \frac{\gamma_i}{\gamma_i}$ γ_i-1 $Au_ip_i)$ $= A\rho_i u_i \left(\frac{e}{m} \right)$ *mⁱ* $E_{\parallel} - g) + \frac{\partial}{\partial r}$ $(A\kappa_i$ $\frac{\partial T_i}{\partial r}$) + $A \frac{\delta E_i}{\delta_t}$ $+ Au_i$ δM_i $\frac{t}{\delta t}$ + 1 2 $Au_i^2S_i$ $E_{\parallel} = -\frac{1}{en_e}$ [∂ ∂r $(p_e + \rho_e u_e^2) + \frac{A'}{4}$ $\frac{A}{A} \rho_e u_e^2$ $\binom{2}{e} + \frac{1}{\sqrt{2n}}$ *en^e* ∂ ∂r $\left(\sum\right)$ *i m^e* $\frac{m_e}{m_i}[(u_e - u_i)S_i - \frac{\delta M_i}{\delta t}] + \frac{\delta M_e}{\delta t})$ *z B*(*r*,*z*) *r*(*z*)

ECE ILLINOIS (*Glocer et al.,* [2009], JGR)

Seven Ion Polar Wind Outflow Model :7iPWOM

• New **Chemical** & **Collisional** Scheme

• **Suprathermal** $\bf{Electron: GLOW}$

• Neutral Density: NRLMSISE-00 \blacksquare al Density: *MCICE_00*

At each time step, solves for the n, T, v, and E_{\parallel}

+

@*r*

(*Aⁱ*

Developed from PWOM (Glocer et al., 2018), 7iPWOM solves Transport Equations and E[∥] equation for H+, He+ , *z* $\mathrm{N^{+}, O^{+}, N_{2}^{+}, NO^{+}, O_{2}^{+}}$ ∂ ∂t $(A\rho_i) + \frac{\partial}{\partial_i}$ ∂r $(A\rho_i u_i) = AS_i$ [1]
Source term ⁼ *^A*⇢*i*(*^e* $\overline{\partial t}$ $(A\rho_i u_i) + \frac{\partial}{\partial r}(A\rho_i u_i^2) + A$ *ⁱ* ⁺ *ⁱ ⁱ* 1 ∂ *i*, 1 ∂ *i mⁱ* $\lim_{n \to \infty}$ $\begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$ $= A_0 u$ $\frac{y_i}{\rho}$ $\frac{e}{m}E_{\parallel}$ 2 $(a) + \frac{b}{c}$ (*A*⇢*i*) + @ (*A*⇢*iui*) = *ASⁱ* ∂ ∂t $(A\rho_i u_i) + \frac{\partial}{\partial_i}$ ∂r $(A\rho_i u_i^2) + A\frac{\partial p_i}{\partial x}$ ∂r $= A\rho_i\left(\frac{e}{m}\right)$ *mⁱ* E_k + $A \frac{\delta N f_i}{\delta N}$ **h** $\frac{1}{2}$ *AdiS***_{***i***}** $\frac{\partial}{\partial t}$ $\int \rho_i u_i^ -\frac{1}{4}$ $A\mathbf{p}$ $\ddot{}$ $\bigg)$ $+\frac{\partial}{\partial x}(\frac{1}{2}A\rho_i u^3)$ $\iota \rho_i u_i$ -*Auipi*) = *^A*⇢*iui*(*^e mⁱ* and $\big)$ - \int ϵ $\frac{1}{\sqrt{a}}(Ar)$ $\frac{\partial T_i}{\partial r}$ + *A***b**_{*t*} + *Auⁱ* sta $\frac{dt}{dt}$ 1 2 *Au*² *ⁱ Sⁱ* @*t* @*r* (*A*⇢*iui*) = *ASⁱ* $\frac{\partial}{\partial t}(A\rho_i u_i) + \frac{\partial}{\partial r}(A\rho_i u_i^2) + A\frac{\partial p_i}{\partial r} = A\rho_i(\frac{e}{m_i}E)$ $\partial t^{(A} \rho_i u_i) + \partial r^{(A} \rho_i u_i) + A \overline{\partial r} = A \rho_i (\frac{F}{m_i})$ Static m ∂ ∂t (1 2 $A\rho_i u_i^2 +$ 1 $\gamma_i - 1$ $Ap_i) + \frac{\partial}{\partial x}$ ∂r (1 2 $A\rho_i u_i^3 + \frac{1}{2}$ io *ⁱ* 1 *Auipi*) ⁼ *^A*⇢*iui*(*^e* $= A \rho_i u_i \left(\frac{\rho_i}{r}\right)$ $\frac{1}{n_i}E_{\parallel}$ $(g) + \frac{\partial}{\partial r} (A \kappa)$ $\frac{1}{\partial r}$) -*Mⁱ* $\frac{A}{\delta_t}$ 1 *<i>i* θ @*t* (*A*⇢*i*) + @ Γ *r*(*z*) (*A*⇢*iui*) = *ASⁱ* $\Delta \rho_i u_i$) + $\frac{\partial}{\partial r} (A \rho_i u_i^2) + A \frac{\partial p_i}{\partial r} = A \rho_i (\frac{e}{m_i})$ or or m_i *E*_k *A*<sup>*ONIi*</sub> $\frac{1}{\pi}$, *A*

Static molecular</sup> @ $\frac{1}{i}$ – ($\overline{1}$ Ap_i ^{$+)$} + $\frac{1}{2}$ $\overline{\partial r} \setminus \overline{2}^{\mathcal{F}}$ $A\rho_i u_i^3 + \frac{1}{2}$ @*r* 1 2 $\frac{1}{2}$ *i* + $\frac{1}{2}$ + $\frac{1}{2}$ + $\frac{1}{2}$ *ⁱ* 1 and $= A\rho_i u_i \left(\frac{e}{m} \right)$ *mⁱ* $E_{\parallel} - g) + \frac{\partial}{\partial r}$ $(A\kappa_i$ $\frac{\partial T_i}{\partial r}) + A$ _{*ot*} + *Auⁱ* $\overline{\textbf{S}}$ *ia* $\frac{\partial t}{\partial t}$ 1 \overline{Z} *Au*² *ⁱ Sⁱ* nolecular <mark>g</mark> [3] Energy Change Source term \mathbf{r} $E_{\parallel} = -\frac{1}{en_e}$ [∂ ∂r $(p_e + \rho_e u_e^2) + \frac{A'}{4}$ $\frac{A}{A} \rho_e u_e^2$ ${2 \choose e} + \frac{1}{en}$ *en^e* $\left(\sum\right)$ *i* m_e ^{\sim} $\frac{m_e}{m_i}[(u_e-u_i)S_i-\frac{\delta M_i}{\delta t}]+\frac{\delta M_e}{\delta t})$ **Static molecular** $\frac{z}{11}$ **ions (zero v and constant T)** Blue: Chemistry Related; Red: Collision Related *Correct Equation*

 $\overline{}$

(*Lin et al.,* [2020], GRL)

Chemistry and Collisions

57 Ľ.

≤

3iPWOM 7iPWOM 7iPWO

3iPWOM 7iPWOM 7iPWO

- **Comparison with observations shows that the presence of N+ improves the outflow solution for** *all species.*
- **He+ solution shows the biggest improvement, as 7iPWOM predicts a density one order of magnitude higher than 3iPWOM, aligned with observations.**

n(N⁺) \cong **10% of n(O⁺)**

3iPWOM 7iPWOM 7iPWO

What causes these differences?

18

Presence of **N+** and molecular species leads to :

- A significant increase (~1 an order of magnitude) in **He**⁺ density.
- **H⁺** solution improves as compared with measurements
- § **O+** density profile better matches the data, and the density is a factor 2 larger.
- § **N+** profile matches observations
- § *All species show an increase in temperature/energy.*

7iPWOM 3iPWOM

1200

1000

800

600

400

200

 -2

 Ω

 $\overline{2}$

Altitude(km)

22

7iPWOM 3iPWOM ECE ILLINOIS

23

7iPWOM 3iPWOM ECE ILLINOIS

(b) Collision (c) Collision (c) SIP VVOIVI ECE ILLIN 7iPWOM 3iPWOM

(b) Collision (c) Collision (c) SIP VVOIVI ECE ILLIN 7iPWOM 3iPWOM

Observations of Molecular lons
Arase (ERG) MEPe, MEPi, LEPi, and XEP data (April 4, 2017)

26

Inner Magnetosphere

Observations of Molecular Ions

Inner Magnetosphere

Our approach: 7iPWOM

(O+, N+ , NO+)

Our approach: 7iPWOM

Our approach: 7iPWOM $m \frac{\partial v_\parallel}{\partial t} - qE_\parallel + \frac{Gm M_{planet}}{r^2} + \mu \frac{\partial B}{\partial r} = 0$ (0⁺, N⁺, NO⁺) *GmMplanet* ∂B $\frac{d\mathbf{r}}{dt} - qE_{\parallel} +$ $\frac{m_{\mu}m_{\mu}}{r^2} + \mu$ $= 0$ ∂s 8000 km **ions e-E||** n_{light} Light Ions (H⁺) **Example 3 Heavy Ions** n_{heavy} 5^o Generalized Ohm's Equation Quasi-**-DSMC** High ■ Above 1000 km, the 7iPWOM has expanded the ion nded th $\overline{\mathbf{C}}$ species (N⁺ and NO⁺) in the kinetic approach. Altitude (km) or
Li Current For now, N_2^+ and O_2^+ are set stationary. conservation <u>IMOSIIV COUIOIIID COINSION D'OMMAIEU</u> & Generalized **1500 km** Energy **1000 km Baropause Altitude conservation** 600 km dynamic - **Collision Dominated** Hydro **Transition Region** Low **Collision Dominated Chemical Equilibrium 200 km**

Steady State: 3iPWOM Fluid Solution

: OGO Data

31

Steady State: 7iPWOM Fluid Solution (static NO+)

7iPWOM Fluid + Kinetic Solution (Dynamic NO+)

Compare (Fluid + Kinetic) vs (Fluid) Solution

34

Compare (Fluid + Kinetic) vs (Fluid) Solution

35

Summary and Future work

- § **N+ ions are a key species** in the ionosphere and their presence alter the outflow for all conditions.
- Comparison with **available data below 1200km**, 7iPWOM shows **tremendous improvement** of the outflow solution when N⁺ is included.
- Preliminary simulations using the kinetic 7iPWOM suggest that **molecular ions could also play an important role** in the local transport of all species [*more work to be done here*].
- \blacksquare The molecular ions, such as NO⁺, need to acquire sufficient energy in a very short time to escape from the ionosphere, and the energization of molecular ions, via wave particle interaction, are still under investigation.

