The role of molecular ions in the overall ionic composition of polar wind outflow

¹Mei-Yun Lin, ¹Raluca Ilie and ²Alex Glocer

¹Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

²NASA Goddard Space Flight Center, Greenbelt, Maryland

lons and electrons escape via open field lines to the Earth's magnetosphere and to outer space

F₂

NO⁻

0,1

 F_1 = Gravitational F_2 = Electromagnetic

$$E = \frac{1}{2}mv^2 - \frac{gMm}{r}$$

Escape: $E_{esc}(e^{-}) \ge 0.7 \text{ eV}$ $E_{esc}(lons) \ge 10 \text{ eV}$

60 Years of N⁺ observation

 The presence of N⁺ ions could change plasma characteristics in the inner magnetosphere.

(*Ilie et al.*, [2020], submitted to JASTP) **ECE ILLINOIS**

Polar Wind Outflow Model (referred to as 3iPWOM)

- Chemical & Collisional Scheme
- Suprathermal Electron: GLOW
- Neutral Density: NRLMSISE-90

At each time step, solves for the n, T, v, and E_{\parallel}

Solves for the **transport** and E_{\parallel} equations for H^{+}, He^{+}, O^{+} $\frac{\partial}{\partial t}(A\rho_i) + \frac{\partial}{\partial r}(A\rho_i u_i) = AS_i$ $\frac{\partial}{\partial t}(A\rho_i u_i) + \frac{\partial}{\partial r}(A\rho_i u_i^2) + A\frac{\partial p_i}{\partial r} = A\rho_i(\frac{e}{m_i}E_{\parallel} - g) + A\frac{\delta M_i^2}{\delta t} + \frac{\delta M_i^2$ $\frac{\partial}{\partial t}\left(\frac{1}{2}A\rho_{i}u_{i}^{2}+\frac{1}{\gamma_{i}-1}Ap_{i}\right)+\frac{\partial}{\partial r}\left(\frac{1}{2}A\rho_{i}u_{i}^{3}+\frac{\gamma_{i}}{\gamma_{i}-1}Au_{i}p_{i}\right)$ $=A\rho_{i}u_{i}(\frac{e}{m_{*}}E_{\parallel}-g)+\frac{\partial}{\partial r}(A\kappa_{i}\frac{\partial T_{i}}{\partial r})+A\frac{\delta E_{i}}{\delta L}+Au_{i}\frac{\delta M_{i}}{\delta L}+\frac{1}{2}Au_{i}^{2}S_{i}$ $E_{\parallel} = -\frac{1}{en_e} \left[\frac{\partial}{\partial r} (p_e + \rho_e u_e^2) + \frac{A'}{A} \rho_e u_e^2\right] + \frac{1}{en_e} \frac{\partial}{\partial r} \left(\sum_i \frac{m_e}{m_i} \left[(u_e - u_i)S_i - \frac{\delta M_i}{\delta t}\right] + \frac{\delta M_e}{\delta t}\right)$

(Glocer et al., [2009], JGR) ECE ILLINOIS

Seven Ion Polar Wind Outflow Model :7iPWOM

 New Chemical & Collisional Scheme

 Suprathermal Electron: GLOW

• Neutral Density: NRLMSISE-00

At each time step, solves for the n, T, v, and E_{ll}

Developed from PWOM (Glocer et al., 2018), 7iPWOM solves Transport Equations and E_{\parallel} equation for H^+ , He^+ , $N^+, O^+, N_2^+, NO^+, O_2^+$ $\frac{\partial}{\partial t}(A\rho_i) + \frac{\partial}{\partial r}(A\rho_i u_i) = AS_i \quad [1]$ $\frac{\partial}{\partial t}(A\rho_i u_i) + \frac{\partial}{\partial r}(A\rho_i u_i^2) + A\frac{\partial p_i}{\partial r} = A\rho_i(\frac{e}{m_i}E)$ $\delta M_i^{(Z)}$ $\frac{\partial}{\partial t}\left(\frac{1}{2}A\rho_{i}u_{i}^{2}+\frac{1}{\gamma_{i}-1}Ap_{i}\right)+\frac{\partial}{\partial r}\left(\frac{1}{2}A\rho_{i}u_{i}^{3}+\frac{1}{\gamma_{i}-1}Ap_{i}\right)+\frac{\partial}{\partial r}\left(A\kappa_{i}\frac{\partial T_{i}}{\partial r}\right)+A$ $=A\rho_{i}u_{i}\left(\frac{e}{m_{i}}E_{\parallel}-g\right)+\frac{\partial}{\partial r}\left(A\kappa_{i}\frac{\partial T_{i}}{\partial r}\right)+A$ $\int \mathbf{x} \mathbf{r}$ $=A\rho_{i}u_{i}\left(\frac{e}{m_{i}}E_{\parallel}-g\right)+\frac{\partial}{\partial r}\left(A\kappa_{i}\frac{\partial T_{i}}{\partial r}\right)+A$ Static molecular $E_{\parallel} = -\frac{1}{en_e} \left[\frac{\partial}{\partial r} (p_e + \rho_e u_e^2) + \frac{A'}{A} \rho_e u_e^2 \right] + \frac{1}{en_e} \left(\sum \frac{m_e}{m_i} \left[(u_e - u_i) S_i - \frac{\delta M_i}{\delta t} \right] + \frac{\delta M_e}{\delta t} \right)$ (3)Blue: Chemistry Related; Red: Collision Related Correct Equation

(*Lin et al.,* [2020], GRL)

Chemistry and Collisions

		Chemistry process	Reaction rate (cm^3s^{-1})	Reference
		$O + h\nu \longrightarrow O^+ + e^-$	see text	
SIONS		$O_2 + h\nu \longrightarrow O^+ + O + e^-$	see text	
		${ m He} + { m h} u \longrightarrow { m He}^+ + { m e}^-$	see text	
		$\mathrm{H} + \mathrm{h} \nu \longrightarrow \mathrm{H}^+ + \mathrm{e}^-$	see text	
		$\mathrm{O} + \mathrm{e}^{*} \longrightarrow \mathrm{O}^{+} + 2 \mathrm{e}^{-}$	see text	
		$O_2 + e^* \longrightarrow O^+ + O + 2e^-$	see text	
		$\mathrm{He} + \mathrm{e}^{*} \longrightarrow \mathrm{He}^{+} + 2 \mathrm{e}^{-}$	see text	
	\neg	$\mathrm{H} + \mathrm{e}^{*} \longrightarrow \mathrm{H}^{+} + 2 \mathrm{e}^{-}$	see text	
311 VV OIVI		$O^+ + N_2 \longrightarrow N + NO^+$	1.2×10^{-12}	[R. Schunk & Nagy, 2009]
		$O^+ + O_2 \longrightarrow O_2^+ + O$	2.1×10^{-11}	[R. Schunk & Nagy, 2009]
H+ He+ ()+		$He^+ + O_2 \longrightarrow O^+ + O + He$	9.7×10^{-10}	[R. Schunk & Nagy, 2009]
··· , ··· , ··		$He^+ + N_2 \longrightarrow N_2^+ + He$	5.2×10^{-10}	[R. Schunk & Nagy, 2009]
		$He^+ + N_2 \longrightarrow N^+ + N + He$	7.8×10^{-10}	[R. Schunk & Nagy, 2009]
		$H^+ + O \longrightarrow H + O^+$	$2.2 \times 10^{-11} \times T_e^{0.5}$	[R. Schunk & Nagy, 2009]
		$H + O^+ \longrightarrow H^+ + O$	$2.5 \times 10^{-11} \times T_e^{0.5}$	[R. Schunk & Nagy, 2009]

		Chemistry process	Reaction rate(cm^3s^{-1})	Reference
Chemistry and Collisions		$ \begin{array}{cccc} O + h\nu & \longrightarrow & O^{+} + e^{-} \\ O_{2} + h\nu & \longrightarrow & O^{+} + O + e^{-} \\ He + h\nu & \longrightarrow & He^{+} + e^{-} \\ H + h\nu & \longrightarrow & H^{+} + e^{-} \\ O + e^{*} & \longrightarrow & O^{+} + 2 e^{-} \end{array} $	$\begin{array}{cccc} O + h\nu & \longrightarrow & O^{+} + e^{-} & & \text{see text} \\ O_{2} + h\nu & \longrightarrow & O^{+} + O + e^{-} & & \text{see text} \\ He + h\nu & \longrightarrow & He^{+} + e^{-} & & \text{see text} \\ H + h\nu & \longrightarrow & H^{+} + e^{-} & & \text{see text} \\ O + e^{*} & \longrightarrow & O^{+} + 2e^{-} & & \text{see text} \end{array}$	
	3iPWOM H+, He+, O+	$O_{2} + e^{*} \longrightarrow O^{+} + O + 2e^{-}$ $He + e^{*} \longrightarrow He^{+} + 2e^{-}$ $H + e^{*} \longrightarrow H^{+} + 2e^{-}$ $O^{+} + N_{2} \longrightarrow N + NO^{+}$ $O^{+} + O_{2} \longrightarrow O_{2}^{+} + O$ $He^{+} + O_{2} \longrightarrow O^{+} + O + H$ $He^{+} + N_{2} \longrightarrow N_{2}^{+} + He$ $He^{+} + N_{2} \longrightarrow N^{+} + N + He$ $He^{+} + O \longrightarrow H + O^{+}$	$\begin{array}{c} \text{see text} \\ \text{see text} \\ 1.2 \times 10^{-12} \\ 2.1 \times 10^{-11} \\ e \\ 9.7 \times 10^{-10} \\ 5.2 \times 10^{-10} \\ e \\ 7.8 \times 10^{-10} \\ 2.2 \times 10^{-11} \times T_e^{0.5} \\ \end{array}$	 [R. Schunk & Nagy, 2009]
		$ \begin{array}{c} H+O^{+} \longrightarrow H^{+}+O \\ N+h\nu \longrightarrow N^{+}+e^{-} \\ N_{2}+h\nu \longrightarrow N^{+}+N+e^{-} \\ N_{2}+h\nu \longrightarrow N_{2}^{+}+e^{-} \\ O_{2}+h\nu \longrightarrow O_{2}^{+}+e^{-} \\ O_{2}+h\nu \longrightarrow N^{+}+O+e^{-} \\ NO+h\nu \longrightarrow N^{+}+O+e^{-} \\ NO+h\nu \longrightarrow NO^{+}+e^{-} \\ NO+h\nu \longrightarrow O^{+}+N+e^{-} \\ N_{2}+e^{*} \longrightarrow O_{2}^{+}+2e^{-} \\ O_{2}+e^{*} \longrightarrow O_{2}^{+}+2e^{-} \\ O_{2}+e^{*} \longrightarrow O_{2}^{+}+2e^{-} \\ N_{2}+e^{*} \longrightarrow 2N^{+}+3e^{-} \\ N_{2}+e^{*} \longrightarrow N^{+}+N+2e^{-} \\ N_{3}+e^{*} \longrightarrow N^{+}+N+2e^{-} \\ N_{4}+O_{2} \longrightarrow NO^{+}+O \\ N^{+}+O_{4}+O_{$	$2.5 \times 10^{-11} \times T_e^{0.5}$ see text a.07 \times 10^{-10} c.22 + 10^{-10}	[R. Schunk & Nagy, 2009]
	7iPWOM	$N^{+} + O_{2} \longrightarrow O_{2}^{+} + N$ $N^{+} + O_{2} \longrightarrow O^{+} + NO$ $N^{+} + NO \longrightarrow NO^{+} + N$ $N^{+} + O \longrightarrow N + O^{+}$ $N^{+} + H \longrightarrow N + H^{+}$ $N_{2}^{+} + N \longrightarrow N^{+} + N_{2}$ $N_{2}^{+} + NO \longrightarrow NO^{+} + N_{2}$	2.32×10^{-10} 4.6×10^{-11} 2×10^{-11} 2.2×10^{-12} 3.6×10^{-12} 10^{-11} 4.1×10^{-10}	 [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [Lindinger et al., 1974] [Richards & Voglozin, 2011] [Harada et al., 2010] [Richards & Voglozin, 2011] [R. Schunk & Nagy, 2009]
	$H^+, He^+, N^+, O^+, N_2^+, NO^+, O_2^+$	$N_{2}^{+} + O \longrightarrow NO^{+} + N$ $N_{2}^{+} + O \longrightarrow O^{+} + N_{2}$ $N_{2}^{+} + O_{2} \longrightarrow O^{+} + N_{2}$ $O^{+} + NO \longrightarrow NO^{+} + O$ $N^{+} + e^{-} \longrightarrow N$ $N_{2}^{+} + o^{-} \longrightarrow N + N$	$ \begin{array}{r} 1.3 \times 10^{-10} \\ 1.0 \times 10^{-11} \\ 5.0 \times 10^{-11} \\ 8.0 \times 10^{-13} \\ 3.6 \times 10^{-12} \times \left(\frac{250}{Te}\right)^{0.7} \\ 2.2 \times 10^{-7} \times \left(\frac{300}{Te}\right)^{0.39} \end{array} $	[R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009]
7		$NO^{+} + e^{-} \longrightarrow N + O$ $O_{2}^{+} + e^{-} \longrightarrow O + O$	$ \frac{4.0 \times 10^{-7} \times (\frac{300}{T_e})}{2.4 \times 10^{-7} \times (\frac{300}{T_e})^{0.5}} $	[R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009]

		Chemistry process	Reaction rate(cm^3s^{-1})	Reference
Chemistry and Collisions		$ \begin{array}{ccc} O + h\nu & \longrightarrow & O^{+} + e^{-} \\ O_{2} + h\nu & \longrightarrow & O^{+} + O + e^{-} \\ He + h\nu & \longrightarrow & He^{+} + e^{-} \\ H + h\nu & \longrightarrow & H^{+} + e^{-} \\ O + e^{*} & \longrightarrow & O^{+} + 2 e^{-} \end{array} $	see text see text see text see text	
New sources/losses for O ⁺	3iPWOM H+, He+, O+	$\begin{array}{c} O_2 + e^* \longrightarrow O^+ + O + 2e^- \\ He + e^* \longrightarrow He^+ + 2e^- \\ H + e^* \longrightarrow H^+ + 2e^- \\ O^+ + N_2 \longrightarrow N + NO^+ \\ O^+ + O_2 \longrightarrow O_2^+ + O \\ He^+ + O_2 \longrightarrow O_2^+ + O \\ He^+ + N_2 \longrightarrow N_2^+ + He \\ He^+ + N_2 \longrightarrow N_2^+ + He \\ He^+ + N_2 \longrightarrow N^+ + N + H \\ H^+ + O \longrightarrow H + O^+ \\ H + O^+ \longrightarrow H^+ + O \\ N + h\nu \longrightarrow N^+ + e^- \\ N_2 + h\nu \longrightarrow N^+ + N + e^- \\ N_2 + h\nu \longrightarrow N_2^+ + e^- \\ O_2 + h\nu \longrightarrow N_2^+ + e^- \\ O_2 + h\nu \longrightarrow N_2^+ + e^- \\ NO + h\nu \longrightarrow N^+ + O + e^- \\ NO + h\nu \longrightarrow N^+ + O + e^- \\ NO + h\nu \longrightarrow O^+ + N + e^- \\ N_2 + e^* \longrightarrow O_2^+ + 2e^- \\ O_2 + e^* \longrightarrow O_2^+ + 2e^- \\ N_2 + e^* \longrightarrow 2N^+ + N + 2e^- \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 [R. Schunk & Nagy, 2009]
	TIPMOM	$ \begin{array}{c} N^{+} + O_{2} & \longrightarrow & O_{2}^{+} + N \\ \hline N^{+} + O_{2} & \longrightarrow & O_{2}^{+} + N \\ \hline N^{+} + O_{2} & \longrightarrow & O^{+} + N \\ \hline N^{+} + NO & \longrightarrow & NO^{+} + N \\ N^{+} + O & \longrightarrow & N + O^{+} \\ \hline N^{+} + H & \longrightarrow & N + H^{+} \end{array} $	$ \begin{array}{r} 3.61 \times 10^{-10} \\ \underline{2.32 \times 10^{-10}} \\ \underline{4.6 \times 10^{-11}} \\ \underline{2 \times 10^{-11}} \\ \underline{2.2 \times 10^{-12}} \\ \underline{3.6 \times 10^{-12}} \\ \underline{3.6 \times 10^{-12}} \\ \end{array} $	[R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [Lindinger et al., 1974] [Richards & Voglozin, 2011]
	H ⁺ , He ⁺ , N ⁺ , O ⁺ , N ₂ ⁺ , NO ⁺ , O ₂ ⁺	$ \begin{array}{c} N \xrightarrow{+} N \xrightarrow{+} N \xrightarrow{+} N^{+} + N_{2} \\ N_{2}^{+} + N \xrightarrow{-} N^{+} + N_{2} \\ N_{2}^{+} + N \xrightarrow{-} NO^{+} + N_{2} \\ N_{2}^{+} + O \xrightarrow{-} O^{+} + N_{2} \\ N_{2}^{+} + O \xrightarrow{-} O^{+} + N_{2} \\ \hline N_{2}^{+} + O \xrightarrow{-} O^{+} + N_{2} \\ O^{+} + NO \xrightarrow{-} NO^{+} + O \\ N^{+} + e \xrightarrow{-} N \end{array} $	$ \begin{array}{r} 3.0 \times 10 \\ 10^{-11} \\ 4.1 \times 10^{-10} \\ 1.3 \times 10^{-10} \\ 1.0 \times 10^{-11} \\ \underline{5.0 \times 10^{-11}} \\ 8.0 \times 10^{-13} \\ 3.6 \times 10^{-12} \times (\frac{950}{250})^{0.7} \end{array} $	[Richards & Voglozin, 2010] [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009]
8		$N_{2}^{+} + e^{-} \longrightarrow N + N$ $NO^{+} + e^{-} \longrightarrow N + O$ $O_{2}^{+} + e^{-} \longrightarrow O + O$	$2.2 \times 10^{-7} \times (\frac{300}{T_e})^{0.39} 4.0 \times 10^{-7} \times (\frac{300}{T_e})^{0.5} 2.4 \times 10^{-7} \times (\frac{300}{T_e})^{0.7}$	[R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009]

		Chemistry process	Reaction rate(cm^3s^{-1})	Reference
Chemistry and Collisions		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
New sources/losses for O ⁺	3iPWOM H+, He+, O+	$\begin{array}{c} O_2 + e^* \longrightarrow O^+ + O + 2 e^- \\ He + e^* \longrightarrow He^+ + 2 e^- \\ H + e^* \longrightarrow H^+ + 2 e^- \\ O^+ + N_2 \longrightarrow N + NO^+ \\ O^+ + O_2 \longrightarrow O_2^+ + O \\ He^+ + O_2 \longrightarrow O^+ + O + H \\ He^+ + N_2 \longrightarrow N_2^+ + He \\ He^+ + N_2 \longrightarrow N^+ + N + H \\ H^+ + O \longrightarrow H + O^+ \\ H + O^+ \longrightarrow H^+ + O \\ N + h\nu \longrightarrow N^+ + e^- \\ N_2 + h\nu \longrightarrow N^+ + N + e^- \\ N_2 + h\nu \longrightarrow N_2^+ + e^- \\ O_2 + h\nu \longrightarrow N_2^+ + e^- \\ O_2 + h\nu \longrightarrow N_2^+ + e^- \\ NO + h\nu \longrightarrow N^+ + O + e^- \\ NO + h\nu \longrightarrow N^+ + O + e^- \\ NO + h\nu \longrightarrow O^+ + N + e^- \\ NO + h\nu \longrightarrow O^+ + N + e^- \\ N_2 + e^* \longrightarrow O_2^+ + 2 e^- \\ O_2 + e^* \longrightarrow O_2^+ + 2 e^- \\ N_2 + e^* \longrightarrow N^+ + N + 2 e^- \end{array}$	3^{-} see text see text 1.2×10^{-12} 2.1×10^{-11} He 9.7×10^{-10} 5.2×10^{-10} He 7.8×10^{-10} $2.2 \times 10^{-11} \times T_e^{0.5}$ $2.5 \times 10^{-11} \times T_e^{0.5}$ see text	 [R. Schunk & Nagy, 2009]
New		$ \begin{array}{c} N^{+} + O_{2} \longrightarrow NO^{+} + O \\ \hline N^{+} + O_{2} \longrightarrow O_{2}^{+} + N \\ \hline N^{+} + O_{2} \longrightarrow O^{+} + NO \\ \hline N^{+} + NO \longrightarrow NO^{+} + N \end{array} $	$ \begin{array}{r} 3.07 \times 10 \\ 2.32 \times 10^{-10} \\ 4.6 \times 10^{-11} \\ 2 \times 10^{-11} \end{array} $	[R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [Lindinger et al., 1974]
for H ⁺	7iPWOM H ⁺ , He ⁺ , N ⁺ , O ⁺ , N ₂ ⁺ , NO ⁺ , O ₂ ⁺	$ \begin{array}{c} \mathbf{N^{+} + O} & \rightarrow & \mathbf{N + O^{+}} \\ \mathbf{N^{+} + H} & \longrightarrow & \mathbf{N + H^{+}} \\ \mathbf{N_{2}^{+} + N} & \longrightarrow & \mathbf{NO^{+} + N_{2}} \\ \mathbf{N_{2}^{+} + O} & \longrightarrow & \mathbf{NO^{+} + N_{2}} \\ \mathbf{N_{2}^{+} + O} & \longrightarrow & \mathbf{NO^{+} + N} \\ \mathbf{N_{2}^{+} + O} & \longrightarrow & \mathbf{O^{+} + N_{2}} \\ \mathbf{N_{2}^{+} + O_{2}} & \longrightarrow & \mathbf{O^{+} + N_{2}} \\ \mathbf{N_{2}^{+} + O_{2}} & \longrightarrow & \mathbf{O^{+} + N_{2}} \\ \mathbf{O^{+} + NO} & \longrightarrow & \mathbf{NO^{+} + O} \\ \mathbf{N^{+} + e} & \longrightarrow & \mathbf{N} \end{array} $	$\begin{array}{r} 2.2 \times 10^{-12} \\ 3.6 \times 10^{-12} \\ 10^{-11} \\ 4.1 \times 10^{-10} \\ 1.3 \times 10^{-10} \\ 1.0 \times 10^{-11} \\ 5.0 \times 10^{-11} \\ 8.0 \times 10^{-13} \\ 3.6 \times 10^{-12} \times (\frac{250}{T_c})^{0.7} \end{array}$	 [Richards & Voglozin, 2011] [Harada et al., 2010] [Richards & Voglozin, 2011] [R. Schunk & Nagy, 2009]
9		$N_{2}^{+} + e^{-} \longrightarrow N + N$ $NO^{+} + e^{-} \longrightarrow N + O$ $O_{2}^{+} + e^{-} \longrightarrow O + O$	$2.2 \times 10^{-7} \times (\frac{300}{T_e})^{0.39} 4.0 \times 10^{-7} \times (\frac{300}{T_e})^{0.5} 2.4 \times 10^{-7} \times (\frac{300}{T_e})^{0.7}$	 [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009]

		Chemistry process	Reaction rate(cm^3s^{-1})	Reference
Chemistry and Collisions		$\begin{array}{ccc} O + h\nu & \longrightarrow & O^{+} + e^{-} \\ O_{2} + h\nu & \longrightarrow & O^{+} + O + e^{-} \\ He + h\nu & \longrightarrow & He^{+} + e^{-} \\ H + h\nu & \longrightarrow & H^{+} + e^{-} \\ O + e^{*} & \longrightarrow & O^{+} + 2e^{-} \end{array}$	see text see text see text see text see text	
New sources/losses for O ⁺	3iPWOM H+, He+, O+	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & \text{see text} \\ & \text{see text} \\ & \text{see text} \\ \hline 1.2 \times 10^{-12} \\ & 2.1 \times 10^{-11} \\ \text{Ie} & 9.7 \times 10^{-10} \\ & 5.2 \times 10^{-10} \\ & 5.2 \times 10^{-10} \\ \text{Ie} & 7.8 \times 10^{-10} \\ & 2.2 \times 10^{-11} \times T_e^{0.5} \\ & 2.5 \times 10^{-11} \times T_e^{0.5} \\ & \text{see text} \end{array}$	 [R. Schunk & Nagy, 2009]
Suprathermal Electron (SE) Production		$ \begin{array}{c} N_{2} + h\nu \longrightarrow N^{+} + N + e^{-} \\ N_{2} + h\nu \longrightarrow N_{2}^{+} + e^{-} \\ O_{2} + h\nu \longrightarrow O_{2}^{+} + e^{-} \\ NO + h\nu \longrightarrow N^{+} + O + e^{-} \\ NO + h\nu \longrightarrow NO^{+} + e^{-} \\ NO + h\nu \longrightarrow O^{+} + N + e^{-} \\ NO + h\nu \longrightarrow O^{+} + N + e^{-} \\ N_{2} + e^{*} \longrightarrow N_{2}^{+} + 2e^{-} \\ O_{2} + e^{*} \longrightarrow O_{2}^{+} + 2e^{-} \\ N_{2} + e^{*} \longrightarrow O_{2}^{+} + 2e^{-} \\ N_{2} + e^{*} \longrightarrow N^{+} + N + 2e^{-} \\ N_{2} + e^{*} \longrightarrow N^{+} + N + 2e^{-} \\ \end{array} $	see text see text see text see text see text see text see text see text see text see text 3.07×10^{-10} 2.22×10^{-10}	[R. Schunk & Nagy, 2009]
New sources for H⁺	7iPWOM H ⁺ , He ⁺ , N ⁺ , O ⁺ , N ₂ ⁺ , NO ⁺ , O ₂ ⁺	$N^{+} + O_{2} \longrightarrow O^{+} + NO$ $N^{+} + NO \longrightarrow NO^{+} + NO$ $N^{+} + NO \longrightarrow NO^{+} + N$ $N^{+} + O \longrightarrow NO^{+} + N$ $N^{+} + H \longrightarrow N + H^{+}$ $N_{2}^{+} + N \longrightarrow N^{+} + N_{2}$ $N_{2}^{+} + NO \longrightarrow NO^{+} + N_{2}$ $N_{2}^{+} + O \longrightarrow O^{+} + N_{2}$ $N_{2}^{+} + O \longrightarrow NO^{+} + O$ $N^{+} + e \longrightarrow N$	$\begin{array}{r} 4.6 \times 10^{-11} \\ 2 \times 10^{-11} \\ 2.2 \times 10^{-12} \\ 3.6 \times 10^{-12} \\ 10^{-11} \\ 4.1 \times 10^{-10} \\ 1.3 \times 10^{-10} \\ 1.0 \times 10^{-11} \\ \hline 8.0 \times 10^{-11} \\ 8.0 \times 10^{-13} \\ \hline 3.6 \times 10^{-12} \times (\frac{250}{T_c})^{0.7} \\ \hline 3.6 \times 10^{-7} \times (\frac{250}{T_c})^{0.30} \end{array}$	 [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [Lindinger et al., 1974] [Richards & Voglozin, 2011] [Harada et al., 2010] [Richards & Voglozin, 2011] [R. Schunk & Nagy, 2009]
10		$N_{2}^{+} + e^{-} \longrightarrow N + N$ $NO^{+} + e^{-} \longrightarrow N + O$ $O_{2}^{+} + e^{-} \longrightarrow O + O$	$2.2 \times 10^{-7} \times (\frac{300}{T_e})^{0.39} 4.0 \times 10^{-7} \times (\frac{300}{T_e})^{0.5} 2.4 \times 10^{-7} \times (\frac{300}{T_e})^{0.7}$	[R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009] [R. Schunk & Nagy, 2009]

- Comparison with observations shows that the presence of N⁺ improves the outflow solution for all species.
- He⁺ solution shows the biggest improvement, as 7iPWOM predicts a density one order of magnitude higher than 3iPWOM, aligned with observations.

n(N⁺) ≅ 10% of **n(O⁺)**

What causes these differences?

Presence of N⁺ and molecular species leads to :

- A significant increase (~1 an order of magnitude) in He⁺ density.
- H⁺ solution improves as compared with measurements
- O⁺ density profile better matches the data, and the density is a factor 2 larger.
- N⁺ profile matches observations
- All species show an increase in temperature/energy.

What causes these differences?

ECE ILLINOIS

-2

Altitude(km)

22

7iPWOM

23

7iPWOM

7iPWOM

Observations of Molecular Ions

Inner Magnetosphere

Observations of Molecular Ions

Inner Magnetosphere

Our approach: 7iPWOM

(O⁺, N⁺, NO⁺)

Our approach: 7iPWOM

Our approach: 7iPWOM $m\frac{\partial v_{\parallel}}{\partial t} - qE_{\parallel} + \frac{GmM_{planet}}{r^2} + \mu\frac{\partial B}{\partial s} = 0 \quad (\mathbf{O^+}, \mathbf{N^+}, \mathbf{NO^+})$ 8000 km ions E **e**⁻ n_{light} Light Ions (H⁺) Heavy Ions n_{heavv} UO High Above 1000 km, the 7iPWOM has expanded the ion species (N⁺ and NO⁺) in the kinetic approach. Altitude (km) • For now, N_2^+ and O_2^+ are set stationary. INIOSHY COULDING COMSION DOMINATE Č. Generalized 1500 km Energy 1000 km **Baropause Altitude** conservation **600 km** dynamic Hydro-**Collision Dominated Transition Region** Low **Collision Dominated Chemical Equilibrium** 200 km

Steady State: 3iPWOM Fluid Solution

31

Steady State: 7iPWOM Fluid Solution (static NO⁺)

7iPWOM Fluid + Kinetic Solution (Dynamic NO⁺)

Compare (Fluid + Kinetic) vs (Fluid) Solution

| | 34

Compare (Fluid + Kinetic) vs (Fluid) Solution

Summary and Future work

- N⁺ ions are a key species in the ionosphere and their presence alter the outflow for all conditions.
- Comparison with available data below 1200km, 7iPWOM shows tremendous improvement of the outflow solution when N⁺ is included.
- Preliminary simulations using the kinetic 7iPWOM suggest that molecular ions could also play an important role in the local transport of all species [more work to be done here].
- The molecular ions, such as NO⁺, need to acquire sufficient energy in a very short time to escape from the ionosphere, and the energization of molecular ions, via wave particle interaction, are still under investigation.

